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PREFACE

The research herein reported was funded by the Systems Management
and Control Program under the auspices of the Research and Special Programs
'Adminlstration, U.S. Department of Transportation. Technical review is
the responsibility of the Systems Evaluation Branch, Research Division,
Transportation Systems Center. The objective of this program is to stimulate
the basic scientific research areas that are of major importance to the U.Ss.
Department of Transportation. This particular project is intended to
dévelop computerized algorithms that will permit network analysis techniques

to be applied to very large networks.,

This report describes three approaches to geographic decomposition in
transportation network analysis including the implementation, preliminary
testing and performance of two geographic decomposition algorithms, one of

which was presented in an earlier Control Analysis Corporation report.
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1. INTRODUCTION

1.1 BACKGROUND

The research reported in this study is concerned with the solution
of large network models of transportation systems and is part of a program
of research into the use of decomposition techniques in this area. A survey
of applicaBle transportation network.problems together with proposed decom-
position algorithms for their solution was presented in the rg?ort "The
Applicafion of Decomposition to Transportation Network Analysis" by G. B.
Dantzig, S.F. Maier and 2. F. Lansdowne [1]. )

A computer code called CATNAP (Control Analysis Transport;tion'Network
Analysis Program) has also been developed. It implements some of these decom-
position ideas for solving the following problems:

a) Highway traffic assignment with fixed demands

b) Highway network design with or without a budget constraint

c) Optimal staging of network investments over time.

The CATNAP implementation is described, with numerical results and
computer run times, in the report "Computer Code for Transportation Network
Design and Analysis" by R. P. Harvey and D. W. Robinson [2].

In this report we discuss preliminary reséarch on the use of geograﬁhic
decomposition techniques in the solution of large transportation network
problems. Three approaches are described: in one, geographic decomposition
is applied to the shortest path module within a traffic assignment algorithm
and in thé second and third, geographic decomposition is applied directly to the
traffic assignment problem. Computer codes have been written and tested which
implement the first two approaches. Both codes are designed to solve only the
highway traffic assignment problem with fixed demands, in contrast to the more

general capability of CATNAP.






The objective of the highway traffic assignment problem is to dis-
tribute a given set of interzonal trip requirements over the links of a
network in an optimum manner. This may have the goal of minimizing the total
travel time for all users of the network in the face of congestion (system
optimal aséignment), or it may be required to find a flow pattern such that
no individual traveler can decrease his time by selecting an alternate route,
given that all others remain on their present paths (user equilibrium assign-
ment);-&hg solutions to these two‘problqns are generally quit; different,
though the solution tecﬁniques used are essentially the same. Although we use
the words "traﬁél time" here and throughout this report, we recognize tﬁat
there are other cost functions which may be appropriate in some applications:
fuel consumption for example, or accident hazard level.

The decomposition techniques in earlier reports have involved breaking
up a large problem mathematically into smaller (and more tractable) parts.,

In this report the decomposition we are using has a physical interpretation as
well as a mathematical one: the network being analyzed is broken in£o separate
parts each of which covers a particular geographic region.

There are at least three reasons for wishing to study geographic decom-
position of transportation networks. In the first place, some networks are
simply too large to be handled as a single entity in computer processing
operations and geographic decomposition may then allow the problem to be
solved piecemeal within the size limits of the computer without loss of
accuracy. Secondly, it may be possible to use geographic decomposition to
reduce the overall running time, as it may be more efficient to solve a series
of smaller problems, rather than solving the original problem. Thirdly, it
is often desired to change the network within a small area and to investigate
the effect of the change without having to obtain a detailed solution for the
whole network. We do not pursue this third motivation for studying geographic
decomposition methods except to indicate how one of the three methods

might be used in this connection.
-2 -






This report will study the usefulness of applying the first two
geographic decomposition approaches for solving the highway traffic assign-
ment problem. We will show that the method based upon deqomposing the
shortest path problem (which we refer to throughout as the "SP Method") can
save substantial amounts of computer memory and running time when compared
with the non-decomposed method; while the method based upon directly decom-
posing the traffic assignment problem (which is called the "BD Method" since
it is\an application of géneralized Benders' decomposition) did not perform
as well as the non-decomposed algorithm on our test problems.

In this section we briefly describe these three approaches and discuss
potential applications and extensions. In the remainder of the report a more
detailed approach is adopted: Section 2 contains a mathematical formulation
of the traffic assignment problem, a discussion of network partitioning tech-
niques and a description of the sample network test problems used in this
study; Sections 3, 4 and 5 contain descriptions of the three algorithms and
Section 6 contains a summary for this phase of research.

1.2 SHORTEST PATH GEOGRAPHIC DECOMPOSITION

A network consists of a set of nodes connected by directed links,
where each link has a certain length. The "shortest path problem" is to find
the shortest directed path between two given nodes of the network and this
problem occurs in many applications. In particular, it is the basic subproblem
in the solution of the traffic assignment problem with fixed demands when
using the Frank-Wolfe method (see reference [2]). The SP (shortest p;th) method
solves the traffic assignment problem by applying geographic decomposition to
the shortest path subproblem of the Frank-Wolfe algorithm. The basic idea of
this method is first, to find all pertinent shortest paths within each region

of the network and thern, to combine the regional paths so as to obtain the

-3 -
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shortest path over the entire network. A "master" network consisting only
of "boundary" nodes is used for the combination step.

As discussed in Section 3, when the SP method is applied to a net-
work model of Washington DC (consisting of 1287 nodes, 3752 links and
151 zones), there is substantial running time or storage savings when
compared with the non-decomposed approach.

1.3 GENERALIZED BENDERS GEOGRAPHIC DECOMPOSITION

) Generalized Bendefs' decomposition is a mathematical technique
(described in [12] and [13)) for partitioning complex optimization problems
to make them easier to solve. It éssumes that the decision variables in the
original problem may be divided into two sets, X and Y, such that if the values
in the Y set are held constant, then the resulting problem in the X variables
is relatively easy tc solve. The solution procedure consists of solving an
X variable problem (called a "subproblem") and then using this solution to
adjust the Y variables (a process which we call the "master problem"); the
subproblem-master problem iteration is repeated until a satisfactory answer
is obtained.

The BD (Benders' decomposition) method solves the traffic assignment
problem by applying generalized Benders' decomposition. In this application
we take the X variables to be the link flows within the geographic regions
and the Y variables to be the flows across the region boundaries.

The results obtained so far for the BD method are not as encouraging
as those for the SP method, and it does not seem to be likely that the BD
method would be very useful in solving practical traffic assignment problems.
1.4 DANTZIG~-WOLFE GEOGRAPHIC DECOMPOSITION

The Dantzig-Wolfe decomposition technique [18] i{s a method for

solving large linear programs which are comprised of a number of subprobleﬁs






linked by a relatively small number of interaction constraints. The inter-
action constraints form the basis of a '"master problem". The solution
procedure cqﬁsists of solving the master problem and the subproblems alter-
‘nately with a guaranteed convergence to the optimal solution. The master
prob}em provides "prices" which are u;ed in the objective functions of the
subproblems to produce desirable (improving) subproblem solutions which become
proposais (candidates) for the master problem on the next iteration. In the
Dantzig-Wolfe dgcomposition procedure as applied to the traffic a§sigément
problem, the subproblems correspond to the flows in the geographic suﬁnetworks;
and the interaction relationships (which form the basis of the master problem)
are the flows across regional boundaries, i.e., flows from one subnetwork to
another.

The formulation for this approach and an outline of the algorithm are
presented in Section 5. The method has not been implemented. However, it is

felt that it is similar in some respects to the BD method and would probably
provide comparable solution times.
1.5 POTENTIAL APPLICATIONS AND EXTENSIONS

This report has been limited to the study of the application of

geographic decomposition to the solution of highway traffic assignment problens
with fixed demand. However, geographic decomposition has a wider application
because the traffic assignment problem with fixed demands is a basic sub-

problem in the solution of several other transportation network problems.

The network design problem involves determining which links in a network
to improve in order to minimize total travel time subject to a budget constraint.
For the case in which there are convex investment costs, continuous investment

decision variables and system optimal traffic assignment, it has been shown






in [1] that the network design problem can be solved as a series of

traffic assignment problems. Thus, a method that will geographically decom-
pose the traffic assignment problem will also geographically decompose the
network design problem.

Another important problem is to determine how best to carry out a series
of.majo; improvements for a transportation network. Since it will probably be

desirable to make some improvements earlier than others; the so-called invest-
ment staging problem seéks the optimum sequence ;n which to carry oué,the
individual link improvements at given stages over a fixed time h;rizdn. For
the case in which there are convex investment costs, continuous investment
decision variables and system optimal traffic assignment, it has also been
shown in [1] that the investment staging problem can be solved as a
series of network design problems, each of which is solved as a series
of traffic assignment problems. Thus, the inves}ment staging problem can also
be geographically decomposed using the methods developed in this report.

In the traffic assignment problem with elastic demands, the number of
trips between a particular origin and destination depends upon
the cost of travel between that pair of zones (or nodes). This relationship
is specified by a demand function. The problem is to determine the user equili-
brium traffic assignment subject to those elastic demand functions. 1In [1] it
is shown how this problem may be converted into a traffic assignment problem
with fixed demands. Thus, the traffic assignment problem with elastic demands
can also be geographically decomposed using the methods developed in this
report.’

Geographic decomposition may be used in a number of new applications
as well. By treating each transportation mode in an urban highway network

as a single geographic region, for example, it may be possible to solve the






so-called modal split problem in a new and possibly more efficient way.

In a rail application a single geographic region could consist of the tracks
owned by a sihgle rail line; while in a freight routing problem a single
region could consist of the routes serviced by one of several trucking firms.
All of these areas would involve additional work in problem formulation, of

course, but the same solution methods described here might be applicable.

~






2. DESCRIPTION OF PROBLEM

2.1 INTRODUCTION

In Section 2.2 we Present a mathematical formulation of the traffic
,assignment problem with fixed demands. The two computer codes described in
this report are both designed to solve this problem with a system optimal
objective. Both codes use the BPR (Bureau of Public Roads) travel cost
functlon form T ("), commonly used by the Federal Highway Administration

(FHWA)

£ k
j(f) = gflier 21, (1)
J
where
fj = total flow on link Js
tj = free-flow travel time for link j (positive),

CAj = capacity parameter for link i (positive),
I = positive constant (FHWA uses 0.15),
k = positive constant (FHWA uses 4).
Two approaches for partitioning a network are described in subsection

2.3; one approach is used for the SP (shortest path) method and the other

for the BD (Benders decomposition) method. In Section 2.4 we describe the
sample test problems used in this study.
2.2 TRAFFIC ASSIGNMENT PROBLEM FORMULATION

The system optimal traffic assignment problem can be written using the

node-arc* notation of Nguyen [3] as:

Minimize 2 = Z Tj(fj) = Z fJ.CJ.(fj) (2)

jea jeA

*The terms arc and link are used interchangeably in this report.

-8-
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subject to:

r
Z £ - Z fJ‘.' = h} (eN;r=1, ..., R) (3)

szi JeVi
_ r=R ) :
= r .
£, = Z 3 (jeA) )
- r=1 ) :
r .
fj >0 (jeA; r=1, ..., R) (5)
where
A = set of links in the network
Tj(fj) = increasing link travel cost function, where fj is the
total flow on link j (See equation (1) for the form of
Tj(fj) used in this study.)
Cj(fj) = unit travel cost on link j as a function of total
flow on link
f; = flow on link j for origin r
-Ori 'if i is a destination node
hir - :E: 0rj ifi=r
3
0 otherwise
N = set of nodes in the network
0ij = number of trips between all origin-destination pairs 1ij







R = number of origin nodes in the network
Vi = set of links terminating at node i

Wi = set of links originating at node i.

‘This problem is a minimum convex cost-multi~-commodity network flow problem
without coupling constraints. The travel cost functions are convex and
differentiable and therefore amenable to a natural decompositigﬁ by
commodities, in.this case origin nédes. The resulting solution scheme due
to Murchland [4] and Nguyen [3] is given in [1].

2.3 GEOGRAPHIC DECOMPOSITION

2.3.1 Partition by Nodes

Geographic decomposition is based on the observation that very large
networks are often only loosely connected; in other words, if a small set
of links are deleted from such a network, it will decompose into a series
of disjoint subnetworks. For example, if four links are deleted from

the network in Figure 2.1,

FIGURE 2.1 -- Non-Decomposed Network

we could decompose the network into a series of unconnected subnetworks, as

in Figure 2.2.

- 10 -







5 &

FIGURE 2.2 -- Decomposition of Network After
Partition by Nodes

We assume that a network has arc set A and node set N. Let S be
the set of deleted links as in the above example. With the removal of the
links in S, the network (N,A) can be decomposed into a series of disjoint
subnetworks (Nl’ Ag) 2=1, ..., L, where

N = NlUN2U. oo UNL

A * AIUAZU. s UALUS.

This may be thought of as geographic decomposition by link
deletion and is equivalent to partitioning by nodes. Each 1link of § has
the property that it connects two nodes of different regions. This type of
decomposition is used for the SP algorithm discussed in Section 3.
Our algorithm also requires a general "connected" property that
a directed path exists from origin to destination for each origin/destination

pair which has a non-zero demand.

2.3.2 Partition by Arcs

Another approach to geographic decomposition is to partition by arcs,

so that the arcs in A are assigned to different geographic areas. We assume

- 11 -






that there are L such areas and that Al is the set of arcs in area %, where

A= AfJAdJ... AL and AznAk =¢ for £ # k. We adopt the following

conventions:

The nqdes in the set NE are classified into two types. If all of the
arcs incident* to node i belong to the same region £, then node i 1is placed
in the set N;. On the other hand, if arcs from more than one region are incident
to node i, then node i is replicated as follows.

| first.we consider the case when all arcs incident* to some node i belong to

" one or other of two regions £ and £” as shown in Figure 2.3(a). The original node

i 1s split into nodes i and node i' as illustrated in figure 2.3(b). All

arcs in A, that were incident to the original node are still incident to node 1i.

All arcs in Al' that were incident to node i are now incident to node i'. The

node i is placed in the set Nz* and the node 1i' in the set N;f. If the

original node was an origin or destination node, then node i 4is still an

origin/destination node with the same demand as the original node. Node i' has

no external demand. With the creation of i', we also create two artificial

arcs p and p'. The two artificial arcs are placed in tte arc set S.

Next we consider the extension to the case wheu the arcs incident to some
node i belong to more than two regions. An example for three regions is

illustrated in Figure 2.4,

a) arc j, 3 arc j,
J]_EAR, JZEAZ '
. arc p ' .
b) arc j, i i arc j,

.EA 0 [} o .EA
354 ‘W/r JEA

Figure 2.3 - Boundary Node of Two Regions

*
Arcs which originate or terminate at node 1.

-12 -






arc j

i jZEAl'
a) " arc jl arc j3
jIEAz j3EA2'l
arc j2 o
] arc p . : arc q :
b) :
i o~ 1 )
& A‘i‘_ :
jleAR, jZEAﬂ,' j3€A211

Figure 2.4 - Boundary Node of Three Regions

In this case we create two dummy nodes i' and i''. The node i 1is placed in
NE*, the node i' is placed in N:f, and the node i'' 4is placed in ﬂ?f;- If

the original node i was an origin/destination node, then node i is still an
origin/destination node with the same demand as the original node. Nodes i°

and 1i'' have no external demand. The artificial arcs P> P's q, and q' are
placed in the set S. The extension to more than three nodes is straightforward.
Let Ny = N*R'UN*f. With these conventions we see that geographic decomposition
by partitioning of arcs can be made equivalent to decomposition by partitioning

of nodes as discussed in Section 2.3.1.

To complete our definitions we now define:

r

h;, = 0 for all newly created dummy nodes i,
i
(r=1, ..., R).
W ' .
i = set of all arcs originating at node i that also belong
to A. (This excludes all artificial arcs in S.)
Wx*
i = set of all arcs originating at node i that also belong

to S.






V* = set of all arcs terminating at node i that also belong to
A. (This excludes all artificial arcs in S)

set of all arcs terminating at node i that also belong

<

.5
*
"

to S.

' This approach to partitioning is used in the BD method described in
Section 4.  -

We also reéuire that the netwérk and associated partition have a.
I"strongly connected" property in the following sense.

Define node subsets Nz as follows. A node 1 i1is a member of set Ni

if it is a member of Nz and is either :

(1) the origin or a destination node for commodity, r i.e., hz #0
or (ii) a node at which an arc in the set S either originates or
terminates,

If for each pair of nodes i and j in the set N; there exists a directed chain
from 1 to j and a directed chain from j to i, and such chains exist for all

node sets NE, r=1, ..., R, and 2=1, 2, ..., L, the network (N,A) and partition

will be called strongly connected. (A directed chain is a set of links that connect

i and j which are all oriented in the same direction.)

In general, one would expect a transportation problem to be strongly
connected, sirce the nodes in the node sets Ni are usually zones (centers for
demand) or connector nodes on major arteries.

2.4 SAMPLE PROBLEMS
This report includes numerical results from applying our decomposition
techniques to two different sample problems: a hypothetical network model

with 81 nodes; and an actual model of Washington DC with 1287 nodes. The
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basic characteristics of these problems are summarized in Table 2.1.

The region sizes given are for the node partition method of Section 2.3.1.
The 8l-node hypothetical model has a structure which decomposes very
readily into three regions. The Washington DC model was developed in
1968 by the Metropolitan Washington Council of Governments, and for the

purposes of our test runs we decomposed this model into four regionms.
N

TABLE 2,1 - SAMPLE PROBLEM CHARACTERISTICS

PROBLEM HYPOTHETICAL WASHINGTON DC

Total Nodes 81 1287

Total Links 204 | 3752

Total Zones 31 151

Regions 3 4

Boundary 10 .63

Nodes

Region 1 |2 |3 1 2 3 4 |
Nodes 22 |21 |38 427 397 221 242
Links 50 |50 [94 1240 1098 628 718
Zones 8 7 6 52 48 32 19 |

Because of the relatively poor performance of the BD code on the
smaller hypothetical problem, we decided not to test this code on the much
larger Washington DC model; thus, only results for the hypothetical model
are given in Sectionlé. However, the SP code was tested on both the

hypothetical and Washington DC models, and these results are given in

Section 3.
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3. SHORTEST PATH DECOMPOSITION

3.1 BACKGROUND

The traffic assignment problem described in Section 2.2 is customarily
solved by an application of the Frank-Wolfe algorithm. This is discussed in
some detail in references [1] and [2]; briefly, the technique involves the
generation of a series of feasible flow patterns each of which satisfies all
of the vonservation of flow constraints at each node. The patterns-are obtained
by routing all of the trip demands for each origin-destination pair via the
links of the network which lie on the shortest path between the pair of nodes.
The costs for the arcs are adjusted as the algorithm proceeds and so the shortest
paths must be redetermined at each iteration; 70-80 percent of the computer
time is typically required for finding these paths.

Because of the many applications for the shortest path problem (besides
the traffic assignment problem), considerable attention has been devsoted to
its solution. Much of this attention has been focused on ways of adapting a
few basic algorithms (e.g., Dijkstra [ 5 1, Floyd [6], Pape[21]) to the spe-
cial structure of specific classes of problems. Some examples of spzcial
structures which some workers have chosen to exploit are:

(1) Link sparsity in the network in which the shortest path is to

be found. This occurs when each node is connected to only a
few (for example, four or five) other nodes.

(2) Geographic locality. This is somewhat stronger than (1) in

that nodes are connected only to other nodes which are "nearby"
in some X-Y grid.

(3) Link lenths which aré non-negative. (This property is required

for the Dijkstra algorithm).
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(4) Link lengths which are restricted to a small range of positive
values or to a range of integer values. (This property is.
required for the Dial algorithm [17D. )

(5 A network which may be @ivided into two or more regions whose
only connection is via a relatively small set of nodes.

(6) A network with property (5) whose regions are connected in a

' linear or corridor fashion, i.e., each regiﬁn communicaggs
only with its neighbors on either side.

The types of networks with which we are dealing in this report will
certainly have properties (1) - (3) above; furthermore, property (4) may
probably be assumed in most cases (as it is in the UTPS code UROAD). For
the present section we will be considering transportation networks which have
property (5) but not necessarily property (6).

Previous efforts at structural decomposition of the shortest path
pProblem have concentrated on networks with properties (5) and (6) but have
generally assumed the network to be dense (i.e., each node is connected to
most of the others) within a given region. (See for example, Hu [ 8], Hu and
Torres [ 9], or Glover, Klingman and Napier [10].) Since transportation net-
works will almost always have properties (1) -~ (3) within each region it may
be advantageous to use the resulting special problem structure in the solution
algorithm. The shortest path decomposition algorithm described next is a
new approach that can take advantage of the structure encountered in highway
networks (properties (1) - (3)) and it does not require the corridor assumption
(property (6)) that is assumed by the previous efforts.

. A "boundary node" is a node located in ore region that is connected
directly to a node located in another region. The shortest path decomposition
algorithm described next does assume that the network has property (5), namely

that it can be partitioned into two or more regions with only a relatively
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small set of boundary nodes. The basic idea of our method is to exploit the
fact that a shortest path between an origin node in one region and a des-
tination node in another region must pass through one or more boundary nodes.
The algorithm given in the next section has been adapted to solve the shortest
path subproblem within a Frank-Wolfe éraffic assignment code. This means that
explicit shortest paths are not produced; rather, trip demands for each origin-
destination pair are directly assigned to the links lying on the shortest path

between the pair. However, the paths could be produced explicitly, if needed.

3.2 ALGORITHM

In the following, we assume that the network has been geographically

decomposed by assigning each node to one of L regions; this partition by

deleting links is described in Section 2.3.1. We further assume that

the network is connected in the sense defined in Section 2.3.1. 1In
region & the set of nodes Nz is divided into three subsets:

D the origin-destination nodes; BL’ the boundary nodes

2?
(i.e., those connected directly by one of the deleted links to a node in some
other region); and Rl ,» the remaining.nodes. The computer code requires
that these three subsets be disjoint; if they are not disjoint, dummy nodes
and links may be introduced as needed to satisfy this condition. A single node
is denoted by a lower case letter; €.g., dzi is the ith origin/destination node
in region .

The algorithm proceeds by solving several shortest path problem;, each
of which is restricted to nodes and links in a single region. The resulting _

distances are called conditional shortest paths, the condition beirng that the

paths are restricted to the particular region. The conditional distance frem:
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node di to node bj is denoted by dc(di’ bj)' As the solution pro-

ceeds, paths traversing more than a single region are found; the shortest of
all such paths we call the unconditional shortest path. Tﬁis uncorditional
‘distance is given by du(di’ bj); note that this may be identical to the
conditional distance for nodes in the same region.

The algorithm consists of four main steps. The first step is to fird
the coﬁditibnal shortest distances from each boundary node to the other nodes
in the same region. Using the results from this first step, a network con-
sisting only of boundary nodes is constructed. Tke second step is to find the
unconditional shortest distances between each pair of boundary nodes. The
third step is to find the sequence of boundary nodes that defines the shortest
path between each pair of origin and destination nodes. This is dore by first
computing the conditional shortest distances between the origin node and each
boundary node in the origin region, computing the conditional shortest distances
between each boundary node in the destination region and the destination node;
and combining this ?nformation with the unconditional shortest distances
between all pairs of boundary nodes. The fourth and final step determines the
unconditional shortest path between each pair of boundary nodes identified in
the third step or between tﬁe final boundary node and destination. Next, we

will describe this algorithm in detail:

Step 1. Boundary Node Conditional Distances. Find the conditional

shortest path from each boundary node to the other nodes in the

same region. Any convenient method may be used for this step; the

computer code (see Section 3.3) uses Pape's algorithm [21] . The

resulting distances for region g are displayed in the tableau in

Figure 3.1.
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D, B Ry
%l"' %m %1""%5 %1... %t
b1
cee BD, BB, B,
by

Figure 3.1 - Shortest Path Tableau

The entry in row bzi and column j is dc(bzi’ j). The submatrices BD ’
BEy must be saved; BN, will be used in Step 4 but it need not be
retained if there is not sufficient room (there generally is not).

Step 2. Boundary Node Unconditional Distances. A network whose nodes

are just the boundary nodes of the original network is used for this
step. Links are introduced joining each pair of boundary nodes in the
same region; the length of each link is taken from the BE& matrix found
in Step 1. The remaining links in this network are the links originally
deleted to obtain the partition; we refer to them as boundary links. The )

matrix of Figure 3.2 results.

Bl B2 cee BL
Bl BBl
B2 BB2
BL BBL

Figure 3.2 - Boundary Node Distance Matrix
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The boundary links appear in the off-diagonal part. A shortest path
problem is now solved for every node in the new network. Once again
any method may be used but because of the density of arcs the basic
Floyd algorithm [ 6] is probably best. The shortest distance between
each pair of boundary nodes and also the shortest path itself (i.e.,

the nodes on the path) are both saved for later stéps.

Step 3. Fan Out. 1In this step the trips originating at each origin
are assigned to the proper arcs in the origin's home region. T;ips
which remain entirely within the home region are routed directly to
their destination nodes while those which leave the region are routed
to tﬁe proper boundary node. The steps below (3a-3e) are repeated
for each origin region £ and for each origin node dzi € DE:
a. Solve a shortest path problem to find dc(dgi’ nzj) for each
noda n e Nl' Then repeat the following steps (3b-3d) for
each destination region k, k =1, ..., L:
b. Find the unconditional shortest path from the origin node dli
to each boundary node bkms Bk in the destination region using

Min
) =

d,(d ;, b n L4, b ) +a b, b T,

21 km

where the first term was found in Step 3a and the second in Step 2.
Both the unconditional distance and the value of n are saved;
trips which are destined for boundary node b will be routed

km

via the boundary node bln in origin dli's home region.
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Find the unconditional shortest path from the origin node

dli to each destination node dkj € Dk using

. - Min

duldpys dpy) m 14,050 b)) +d (b, 5]
where the first term was found in Step 3b and the second is from
the BDk matrix found in Step 1. When g = k the direct path found
in'Step 3a may be shorter; if so, it is used. If not, then the

shortest path from dli to dk' is the path from d go en ‘(n was
recorded in Step 3b and the path was found in Step 3a), then from
bln to km (the path was found in Step 2) and finally from bkm
to dkj (the path was found in Step 1, but it may have been discarded).
Because the requirement for shortest paths in the Frank-Wolfe
traffic assignment algorithm is to find the Proper routing of
trip demands, we combine this feature directlj with the geo-
graphically decomposed shortest path determination in order to
minimize computer System overhead. To do this we augment the
trip demand table by adding all of the boundary nodes as potential
origins and/or destinations; all boundary trip demands are set-
initially to zero.

If k =2 and the direct path from Step 3a is the un-
conditional shortest path, the basic trip table will not be
modified. Otherwise, the followiné four steps are carried out

[0(i,j) refers to the number of trips between origin i and

destination j]:

.» d,.); this routes the trips
(1) Increase O(dli’ bﬁn) by O(d21 kJ) p
on the first leg of the shortest path, i.e., to the home

region boundary node.
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Step 4.

(2) Increase O(bzn, bkm) by O(dzi’ dkj); this routes the trips
to the proper boundary node in the final region. Note that
there may be further re-routing needed along the path found
in Step 2; this is deferred until Step 4a.

(3) Increase o(bkm’ dkj) by O(dni’ dkj); thls routes the trips
to the destination node.

Using the shortest paths found in Step 3a and the trip demands

between dgi and nzj E(Dl UBE) found in Step 3d, ingrease the

flow on each linkin region g by adding the appropriate demands.

Fan In. In this step the demands temporarily assigned to boundary

nodes are routed to the proper destination.

a.

First re-route all trip demands according to the shortest paths
found in Step 2. This may be done by manipulating the trip

table; for example, if the shortest path in Step 2 were Bi* bj - bk
the following steps would be performed:

(1) Increase O(bi’ bj) and O(bj, bk) by O(bi’ bk)'

(2) Set O(bi’ bk) to zero. ]
For each region g and for each bzie B2 find the conditional shortest
path from bli to each nljg Nl; this was first done in Step 1 but
must be repeated if the data was not saved. Route the trips in the

trip table from bli to each dlje Dz and to each blne B, according

2
to these paths. Finally, route the trips from bli to each bkj < Bk’

k # ¢ via the proper boundary links.
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3.3 IMPLEMENTATION

The shortest path algorithm of Section 3.2 has been implemented in g
FORTRAN program which is briefly described in this Section; for convenience,
‘the brogram is referred to as the "Sp Program". This brogram uses the
shortest path decomposition approach to solve the shortest path subproblem
wi@hin a Frank-Wolfe traffic assignment algorithm. The material here is not
intended to.serve as documentation for the prospective user of the code nor
does it provide sufficient detail to enable one to reconstruct the Program;
the aim, rather, is to give an overview of the way in which the algorithm has
been set up.

The SP code is quite similar to the CATNAP code described in [2); it
uses the same input foxiats, many of the same data structures, and also the
basic Frank-Wolfe algoritim. Most of the special features of CATNAP have
been omitted from sp, however; SP solves only the traffic assignment problem
with a system optimal objective function and has no network design or invest-
ment staging capability. These features could be added to SP without ;uch

difficulty though, because of its great algorithmic similarity to CATNAP,

The SP program consists of 27 modules in three different groups: input,
traffic assignment and data management. The first two groups function much
as do their counterparts in CATNAP; the third group, however, is'unique to SP.
The program incorporates a dynamic memory allocation method which automatically
sets aside just enough main memory to store the problem data within a user-
supplied array; if there is insufficient memory, the data management routines
set up external storage for the data on tape or disk. This is described more

 fully below.
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The basic network topography data is stored much as it is in CATNAP:
the links are sorted by origin node within each region and a pointer
array gives fbr each node the index of the first link originating there. The

practical capacity, free flow travel time and destination node index are

stored fo; each link as well. The major difference between SP and CATNAP is
that the node in@ices within a given region in SP are assigned independently
of the other regions, thus, a reference array is used to give for each node
its global index (the index used in the problem input data). Using half word
integers for storing indices, the total memory requirement for région £ is
then N2+ 2’/2-A1.

Core storage must also be allocated for trip tables and for the current
and trial flow values on each link. Since the topography, trip table and flow
values for only a single region need be available at any given time, the values
for the other regions may be stored outside of main memory and brought in only
when required. A set of three buffers is thus allocated as follows:

(1 Flow values (existing flows, trial flows and marginal costs);

the size is mix 3-A2 words.

(2) Network topography, as described above; max N2+ 2% -Az words.

(3) Trip table for a single origin; 4.2 word;. (Z is the total

number of origins and destinations.)

If additional memory is available it is assigned for extra buffers in
the order given above; otherwise, the remaining values are '"paged out" to an
external data set, one buffer at a time. If sufficient memory for one buffer
of each type is not supplied, program execution is halted.

In addition to buffered values, memory must be allocated for arrays which
are core-resident at all times. These arrays include:

(1) The topography and flow values for the links and nodes in the

boundary area, i.e., between regions.
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(2) The BB and BD matrices described in Section 3.2.
(3) The augmented trip table needed to re-route trip demards vig

boundary nodes.

%) Various work vectors (etg., to find the conditional shortest

path solutions) and status vectors (e.g., to give the size
of the network in each region). .-

Once memory allocation has been performed and problem data read in the
SP code solves a series of shortest path problems using the algorithm of Section
3.2. If external Storage must be used the code will read the trip table once
and the topography and flow data three times per Frank-Wolfe iteration; this min-
imizes both Processor time and input-output charges.

The amount of main memory needed by the SP program depends critically on
the number of boundary nodes and the number of regions as well as the size of
the problem in each region. The total amount of non-buffer array storage is
given approximately'by

S'NB2 + 7°NB + 12-NR
+ 1%+ NB - NZR + 3.NNR words,
where NB is the number of boundary nodes, NR the number of regions, NZR the
maximum number of zones in a single region and NNR the maximum number of nodes
in a region. 1In addition to this, core must be added for at least one of each

type of buffer,

The minimum amount of array storage required for the 8l-node

hypothetical problem discussed in Section 2.4 is 1191 words (compared to

2087 words for CATNAP). Table 3.1 gives approximate minimum array sizes for
a series of traffic assignment problems of increasing size; it is assumed
that the number of links is about three times the number of nodes in each

region and that the regions are approximately of equal size.
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TABLE 3.1 - ESTIMATED MINIMUM ARRAY STORAGE
FOR VARIOUS SIZED NETWORKS

2000 2 40 22,600 39,600

‘ 3000 3 60 28,000 59,400
5000 5 100 43,000 98,900
l0,00Q 10 200 107,500 197,700
\

3.4 COMPUTATIONAL EXPERIENCE AND RESULTS

The SP code has been tested on a variety of traffic assignment network
problems, The eanswers given by'SP at each Frank-Wolfe iteration should be
identical to those from CATNAP on the same problem, because the two codes
use the sane besic Frank-Wolfe traffic assignment algorithm. In practice,
however, the results from these two ccdes are slightly different. Because
shortest paths are not always unigue in real networks, the two programs nay
choose different initial solutions, so that these codes may then approach the
optimum solution by different paths. When a small random value is added
to each of the free-flow travel times (thus making all shortest paths unique),
the two codes produce identical results.

As discussed in Section 1, there are two reasons for studying geographic
decomposition: Firstly, some networks may be too large to be handled as a
single entity in computer processing operations, and geographic decomposition
may then ellow the problem to be solved piecemeal within the size limits of
the computer without loss of accurﬁcy. This reason will be examined in Section
3.4.1 using the 8l-node hypothetical problem, where computational results will

be given for several SP runs which use varying amounts of core storage but
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with the same regional decomposition (3 regions). Secondly, it may be
possible to use geographic decomposition to reduce the overall running time,
as it may be more efficient to solve a series of mmaller prbblems rather
than solving the original size problem. This second reason will be examined
in Section 3.4.2 using the 1287-node Washington DC network, where compu-
tapional results will be given for several SP runs which use varying regional

decompositions (2, 3 or & regions) but without any external storzge.

" 3.4.1 Hypothetical Network

First, we will discuss the computational results from running
the SP code on the 8l-node sample problem of Section 2.4, As indicated
previously, this problem requires a minimum of 1191 words of arrsy storage
(vs. 2037 words for CATNAP), although fhis problem could be mansged entirely
in-core with 2768 words of storzge.

Table 3.2 gives the performance of the SP and CATNAP codes after 26
Frank-Wolfe iterations. Note first tkat the in-core version of SP (run number 1 in
Table 3.2) requires about 35 percent more array storage than CATNAP, but costs
about the same to solve. The slight time difference may be accounted for by
the fact that SP code must read the input data five different times in order
to set up all the buffers. Thus from an algoritkm point of view, the SP
program is about as efficient as CATNAP for this problem.

Because the topography, trip tables and flow values for only a single
region need be available at a2 time for the SP code, the values for the other
regions may be stored outside of core memory and brought in only when required.
Several different storage allocation schemes can be devised, depending upon
which arrays are retained in-core énd wvhich arrays are chosen to be stored

exterrnally (see run numbers 2, 3 and 4 in Table 3.2). Note that when external
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storage is being used, then the additional CPU and disk changers cause the
solution cost to rapidly increase. This effect is not due to algorithmic
differences,.because all four of the SP runs carried out the same sequence
of operations and gave identical results. Rather, this increased cost
results from computer system overhead for input and output.

Oum conclusions for this problem are the following: Ths.in-core
" version of SP costs about the same as CATNAP to solve; while SP does ailow
the traffic assignment problem to be solved with reduced amounts of core

array storage, the solution costs rapidly increase as the available amount

of core storage decreases.

3.4.2 Washington DC Network

The Washington DC network model includes 1287 nodes and 3752

arcs and it is specified by three data sets:

a) Link data which includes the to and from nodes, the link's
length, Fhe free flow travel time on the link, the number of
lenes, whether or not a reverse link can be built, and
information needed to determine link capacity.*

b) GCrid data which consists of the horizontal and vertical
coordinates of each node in the network.

c) Trip demand data which is the number of trips required

between each origin and destination pair.
By plotting the grid and link data, it was possible to decompose the
network into four regions (see Figure 3.3).

a) Virginia, by cutting along the Potomac River.

# The data specifying the Washington DC network was obtained from the
Federal Highway Administration (FH4A), and it was "cleaned up" by
deletirg three obviously erroneous lirks.
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b) Northern Maryland suburbs, consisting of Montgomery County

and small portions of Howard, Prince George's and Anne Arundel
counties; the eastern cut was between Highways I-95 and
Maryland 564,

¢) Southeastern Mayland, consisting of the remainders of Prince

George's and Anne Arundel counties that are south of Maryland
Highway 564, This region also includes the portion of
Washington DC ﬁhat is east of the Anacostia River; and

d) Central Weshington, consisting of all of Washington DC

except that part east of the Anacostia River which is included

in region c.

Figure 3.3 Geographic Decomposition of Metropolitan
Washington DC

These regions can be recbmbined, Yielding numerous regionalizations
which may be studied. We looked at five of these possibilities as described
in Table 3.3. The complete regionalization is described by alternative E
in Teble 3.3.

The results from running CATHAP and the SP codes on the Washington
DC network are summarized in Tables 3.4 and 3.5. Consider first Table 3.4
which is based upon 4 Frank-Wolfe iterations. CATNAP required 42432 words

of array storage, processing cost of $14.44, and 1.26 minutes of CPU time.
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SP runs were made for the four different geographic decomposition alterna-
tives that were described in Teble 3.3+ Each of these SP runs used the
in-core version of the code (i.e., there was no external storage) and each
of these runs resulted in smaller CPU times and processing costs than did
CATNAP. Note that the running times for the SP code are influenced by both
the number of boundary nodes and the number of regions. For example, both
alternitives D and E (in Tsble 3.3) required 1.09 minutes of CPU time; thus
the added efficiency gained from decomposing the network into an additional
region (from 3 to ) waé exactly balanced by the loss of efficiency due to
the increﬁse'in boundary nodes (from 43 to 63). Note that alternative D
resulted in the lowest processing cost, which was $12.73 and is about 12 percent
less than the cost for CATNAP. Table 3.4 also gives the minimum array
storage requirements for each of the decomposition alternaiives. Note that
alternative D also had the smallest array storage requirements, which was 20698
words and is about 50 percent less than the storage used for CATNAP, However,
as ve have seen in Section 3.4.1, the solution costs rapidly increase as the
available amount of core storage decreases; thus, if this minimum storage
were used, the CPU time, Disk I/0, and processing cost would be much larger
than the in-core values listéd in Table 3.4.

When comparing the SP and CATNAP codes, it is important to realize
that SP must do some initial work setting up buffers for each region prior
to initiating the Frank-Wolfe algorithm. Thus, the total CPU time for an
SP run includes an initialization component that 1§ not needed by CATNAP.
This implies that the comparison of running times between SP and CATNAP
will become more favorable for SP as the number of Frank-Wolfe iterations

increase. This is illustrated in Table 3.5, in vhich SP was compared with
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CATNAP after 25 Frank-Wolfe interations and SP was exercised in decomposition
alternative E (which has 4 regions), resulting in a running time that is about
40 percent less than the running time for CATNAP, Note that in the corres-
pronding comparison given in Table 3.4 for 4 Frank-Wolfe iterations, the running
time for SP was only about 13 percent less than the time for CATNAP.

Thus, for the Washington DC problem, our conclusion is that the SP
code results _in & substantial decrease in running time and processing costs

Y
vhen compared with CATNAP.
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4. GEOGRAPHIC DECOMPOSITION USING THE GENERALIZED BENDERS ALGORITHM

4.1 INTRODUCTION

This section presents a method, based on generalized Benders Decom-
position [12], that provides a geographic separation of the basic traffic
assignment problem into smaller, more manageable subproblems. We will
describe the method in connection with the system optimal traffic assign-
ment ‘problem Vith fixed demands, and use the partitioning by.arcs version of
geographiL decomposition described in Section 2.3.2.

The Benders Decomposition algorithm [13] was proposed for the solution
of certain mixed-variable mathematical programming problems. The variables are par-
titioned into two sets, x and y, for example, where the y set variables are to
be regarded as complicating variabples in the sense that if values are assigned
to them, the resulting mathematical program in x variables is considerably more
tractable than the original problem. The solution procedure consists of alter-
nately solving a problem in only the x variables (the subproblem) and solving
a "relaxed" master problem in the y variables. The master problem has a very
large number of constraints and it is relaxed in that all but a few of these
constraints are ignored. Each time the subproblem is solved a new constraint
is generated and appended to the set of master problem constraints. The
algorithm is enhanced if the y variables can be restricted to "feasible"
solutions, fhat is, solutions for which the subproblem is feasible. The
procedure is'guaranteed to converge to an optimal solution. The method
generates upper and lower bounds on the optimal objective value which in the
limit equal this value. The problem considered in the Benders paper is a
mixed integer programming problem with the y variables as the set of discrete
variables. The subproblem is a linear program in the x variables and the

master problem is an all-integer program.
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Geoffrion [12] generalized the decomposition procedure of Benders to
allow a broader class of problems to be considered, making use of non-linear
convex duality theory. The subproblems are not restricted to be linear
programs. This generalization is summarized in Appendix 1. (See also
Florian and Nguyen [14]).

Consider the following formulation of the traffic assignment problem.

N
' We will refer to this as problem P1.

Min EE: Z T, (£,) 6)

jeAl
subject to ..
T T T
- = *' = .
Z fj Z fj hi (isNz 38=1, 2, ...L; (7
jeW; jeV§ r=1, 2, ..., R)

r r r T r
Z f"z fy= 1y Z%-* Z 8 &

3wt j v+ J e jevi

(%)

(feN#k e = 1, 2, ..., 13

r=1,2, ..., R)

R

£, = z f;:' (jeN (9)
r=1

£] 20 (jeA) (10)

r . T

B >0 (jes) (11)

where g§ is the flow in directed arc j of commodity r and where Tj(fj)’
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r ,r
j) hi,
2.2 and 2.3.2.

£ R, A, Ay, W;, W;*, V?, V;*, Ni, Ni* and S are as defined in Sections
We will assume that the network and associated partition are strongly

connected in the sense described in Section 2.3.2.

¢

-The problem Pl 1is a convex cost multi-commodity flow problem where
the commodities are distinguished as flows which originate at the same zone.
Practical problems could be very lafge, for example 5000 arcs, 500 origins

“and 2,500,000 decision variables.

In Dantzig, Maier, and Lansdowne [1] two approaches are described for
the solution of this problem.(Pl) using the Benders algorithm with geographic
decomposition. These two approaches are summarized very briefly and super-
fically as follows: -
Approach 1: Partition the variables of problem Pl into the two sets
(f;, fj) and (g§) and apply the generalized Benders algorithm as outlined
in Appendix 1. The subproblem with variables (f§, fj) decomposes into a
series of disjoint subnetwork problems related to the networks (Nz, A)

L

2=1, 2, ..., L, each of which is a traffic assignment problem. If we define

a commodity as being all flows from an original origin (or to an original
destination) each subnetwork problem is a minimum convex cost multicommodity
network flow problem with commodity interactions only through the convex
differentiable objective functions. The natural decomposition by commodity
used by Murchland [4] may therefore be used in its solution.

The master problem is a linear program in the (g§) variables. It is
possible to ensure feasibility in the (g§) variables in the sense defined

earlier by attaching the following additional constraints to the master problem,
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and making the assumption that the "strongly connected" property holds for the

network. . hr ) ( ; gf ) g?) o a2
i J 3

ieN JEWR* JEVH*
. L i -1

(r=1, 2, ..., R; &2 =1,2, ..., L)

To initiaiize the algorithm we need a feasible set of values for the
(g?) variables. Then we alternate between the subproblem and the'master.pro-
blem generating a new master constraint (a cut) each time the subproblem is
solved. Upper and lower bounds on the optimal objective value are maintained
at each step and the prqcedure terminates when these bounds are sufficiently
close.

Approach 2: The second version of the geographic decomposition procedure
is obtained by first applying the natural decomposition by commodity. This is
justified because the only interaction between commodities is in the objective
function and the objective function is convex and differentiable. We then
apply the Benders algorithm to each such commodity partition successively and
iterate over commodities until the solutions are unchanging.

The Benders technique as applied to the problem resulting when values
are fixed for all commodities but one is similar to, but simpler than, the
previous approach. Again, the Benders subproblem decomposes into L independent
problems corresponding to the geographic decomposition, each of which is a
minimum convex cost network flow problem. Approach 2 is the algorithm
implemented in the BD computer code which is described in the succeeding

sections.
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Remark 1: We note that a comquity associated with a unique origin
in the original network may have multiple'origins in a subnetwork.
‘ Remark 2: As a result of the "partitioning by arcs" geographic
decomposition approach the objective function of problem P1 has no component
from the g§ variables. It is a convex differentiable function of the f

3

variables only.

Remark 3: One is tempted to solve the master problem in approach 1
by applying the decomposition by commodity procedure to it to obtain a
sequence of linear programs each of which relates to one commodity only.
Eowever, the objective function in the master problem is convex but not
necessarily differentiable and t£e procedure is not guaranteed to converge

to a global optimal soclution. The objective of the master is of the form

min | max k

where Lk is the linear constraint generated from the kth solution of the
subproblem, uk is the dual multiplier vector from the kth solution of the
subproblem and g is the vector of master variables. The function

max

Kk Lk(g, uk) is convex and piecewise linear.

4.2 DEVELOPMENT OF- THE ALGORITHM

First we define a single commodity problem which we call P2r; this pro-

blem results from decomposing problem Pl by commodity. We assume that

feasible flows fjp are known (jeA, p#r).
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Problem P2r

min.z Z T, (K, + £5) ' - (13)
2
A

jeA

subject to z £F - z £f = h;(ieN:;2=l, 2, ... 1 (14)
%

J J
deiy jevy |
Y . .
2 G f s 3 g Y e
EW¥ v* %%k Y b
3 i jevy ;]ewi JEVi
(ieNz* ;2=1, 2, ..., L)
r
£,20 (jeh)
(16)
r
g; > 0 (jes)

K. = EE: f? where fg is the given flow on link j for commodity p.
pfr

Solution Algorithm for Problem Pl

Following approach 2, the steps of the overall algorithm are as follows:

Step 0 Set r<1l
Kj*- 0 (jea)

Step 1 Find a feasible solution f; and E; to problem P2r; such a solution

always exists because of the "strongly connected" assumption.

o3 SR S S 4
Set £, « £ -
3 j* B T8
=X
Set K, «+ K, + f; j €A
5 5 i (jeA)
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Setr+~r+1
“R “R
If r =R, set fj*-o, gj + 0 and go to Step 2;

Otherwise repeat Step 1.

Step 2 Solve problem P2r and obtain the solution f; and gf.
J
Set K, « K, + - '
5 y P (jea) .

If the current solution (f;, §§) is edual to the old

-~

. °r r _ " i
solution (fj s 8j) within some tolerance, to Step 3;

Otherwise set f; ~f_,

=T ~T
J° %3

-r
+ gj, q < 0 and go to Step 4.

Step 3 Set q «+ q + 1.
If q-# R, go to Step 4;

Otherwise terminate the algorithm.

Step 4 Set r <« r modulo (R) + 1.
Set K, « K, - f-.
J J J

Go to Step 2.

Comments on the Algorithm

Step 0 is used just once for initialization.

Step 1 is also an initialization procedure to obtain a set of
n
h|

have been obtained for all commodities except one, the main iterative loop

feasible flow values which are denoted by £ When such flow values

is entered at Step 2. This iterative loop involves alternating between
Step 2 and Step 4 during which new flow patterns are obtained by commodity.
Step 3 is used to determine when the termination condition has been
reached, namely, when the solutions have settled down to within a tolerance

for each commodity.
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We now turn our attention to the solution of P2 » which is solved by
r

an adaptation of the generalized Benders Decomposition procedure as follows.

The variables of P2 are partitioned into the two groups f

refer to as vectors f and g .

cating variables"

£F are the variables of the subproblem.

and g§, which we

The variables g are the so-called "compli-

which become the variables of the master problem.

(12) are added to the master problem.

Solution Algorithm for Problem P2r

The set

Feasibility constraints similar to

"

Step O Select a feasible gr, say Ero.
Set x° « 0.
T
UBD % o ,
Select a suitable convergence parameter ¢ .
Set K« 1.
Step 1 set gF « g N !
Solve the subproblem P3r:
min Z(f") Z Z T, (K, + f) (17)
JeA
subject to Z £ - Z £7 = ht (ieN*; 5 =1, 2, ..., 1) (18)
J | J i L
- JeWF JeV}
T r r ~-r -r
- = - + . (19)
Z fj Z fj hy Z 85 Z 8
JeW} jevy JeWy* Je Vi
(HENF*; 2 =1, 2, ..., L)
f; >0 (3eA) (20)
2p . =
K., = Z £ (jea)
J
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This is a single commodity convex cost network flow problem which

decomposes into L independent problems, one for each region.

Let f;, Zr be the resulting solution and G:% be the dual variables
associated with constraints (19).

. Set UBD = min@BD, z_ (I'r)} )

If ;:rl > UBD - €, terminate;

Otherwise continue to Step 2.
A

Step 2  Solve the master problem P4r
. k
min x_ . (21)
subject to
k k -k b b
X2 M D, Q. 5- ) 22
eIk 3 ey S V%%
1ENZ 'Jewi JeVi

(k=1, 2, ..., K)

5[5 55 -

7 %%k %%k
1eN£ jswi jeVi
(=1, 2, ..., L)
r
. > 0.
SJ el
xf’ unrestricted.

. -k -
Suppose the solution is X grk.

Set k « k+ 1 and go to Step 1.

Comments on the Algorithm

At Step 1, the subproblem P3r'decomposes into L independent problems.
They are solved as single commodity uncapacitated network flow problems using
the Frank-Wolfe algorithm, see [1, 2], which requires that successive solutions

are found with linearized costs. A one-dimensional search is carried out over
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successive pairs of solutions using the convex costs to find the minimum
cost solution which becomes the initial solution for the next Frank-Wolfe
iteration. It is not necessary to solve these problems all.the way to
optimality. This is allowed by the Generalized Benders Decomposition
élgorithm (see [12], Theorem 2.1 and [19]).

The problem at Step 2 is solved as a general linear program. The
constraints (22) are accumulated as different problems at S;ep 1
‘are solved and the index k indicates from which problem the (Mk, uit)
values are to be taken. The solution of the master problem is found in the

BD_computer code by solving its dual so that additional constraints (22) may

be readily added. These master problem cuts are generated as follows.

In the notation of appendix 1 the constraints (22) are of the form

xs > L (g5, o) k=1, 2, ..., K
where
. 2 ;
% = -
", B = g r iz (6T + Z D &
N** jeWk®
i
r 1 T
NI Y y
) 8 P j] (24)
. * . f ok
JEVi JEWi JEVi

A CIDDIEADAE PP (I
i

Kk
L isN&
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where the region Fr is defined by constraints (18) and (20) of the problem in

-r _ -r k- 1
Step 1. Now consider the dual of the problem P3r when g =g

SupT inf T Z Z k r
ulj:: £ bt Zr(f ) + ug hi
‘  unrestricted L ieN**
. - -7 r r -
+ . - :g: £, + :g: £
AP ; |
£ . .
Jews jeVi jewi jEVi
R PR EX S I W W R £y
T u £LeFt r ir P
L 1eN** JEW* j€V§
- ; t Z : (26
2 ( > & )] |
% 7 ek s ok
1eN szi j Evi

The solution is fr, u, Zr so that

’. -k - - - -
w3 Sl S 5 S 1)
’ i

eW#* EVE®
J i J
= -+ -
Zr Z ir <Z j Z gj >
L2 deN#®#* jewrx JEVA*
I O NI N
v 3 27)
L i jgw:i‘:* JEVi* 2
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The constant Mk in (22) may thus be found by adding the quantity

22 W2 - > w] @)
L

i eN*% s Wk %%
1;N£ JeWi jeVi
to the optimal objective value Er obtained for problem P3r.

In the implementation of the algorithm, each constraint of form (22)
has been applied as L separate constraints, one for each subregion,
~N - .
-with a corresponding change of form for the objective (21). This is

discussed in [19].

4.3 IMPLEMENTATION

The algorithm of Section 4.2 has been implemented in a test bed computer
program for the purpose of identif&ing its operating characteristics
and investigating its performance. In this section we give a brief overview
of the code and its capabilities. For convenience we refer to this Benders
decomposition program as the "BD Program."

Unlike CATNAP (reference [2]) and the SP code (Section 3.3), BD was
the initial implementation of an algorithm whose properties were not well
understood. ¥or this reason a very flexible, general purpose program was
written so that the many different options of the Benders decomposition could
be conveniently investigated. Internal array dimensions and external data
sets were allocated so that very large problems could be solved without modify-
ing the basic program; this also adds to the flexibility of BD.

Unfortunately, the great generality of present BD implementation leads
to extremely poor performance, especially for small and medium sized problems

when the overhead is expectedly high. We will discuss this

point further in Section 4.4; for now, we note that the system design described
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in this section can be substantially improved now that something of its perfor-
mance is known.

The BD code contains 39 modules which may be considered in four main
gIroups: data input, traffic assignment, linear program and direct access data
set management. The code is designed to solve only the optimal traffic assign-
ment problém with fixed demands and system optimal assignmgnt. -

The Basié problem data strucéure is similar to that used by the.SP code
"discussed in Section 3.3 except that BD makes no provision for keeping.p;rt of
the data in main memory at all times; all arrays are stored externally in one

of four disk files and are brought into memory as needed. The four disk
files contain:

(1) The topography (node and link data) for each region as well

as the total flow on each link

(2) The trip table and link flows for each origin node in each
region

(3) The master problem data for each origin node

(4) The ma;ter problem solution values and generated Benders cuts

for each origin node.

To allow maximum flexibility in solving a traffic assignment problem
these four disk files are all direct-access files, i.e., one may look at origins
or regions in any desired sequence. However, both the direct access file
organization and the very large size of the files add greatly to the cost
of problem solution,

The traffic assignment modules include various bookkeeping routines
(link cost evaluation, cut generation and a linear program interface) and a single
suSprogram which solves the basic Benders subproblem of P3r’ which is to find ‘an

optimal assignment of flows for a single origin in one region given:
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(1) The supply and demand values for the zones in the region (as
originally input)

(2) The required flows across the boundary nodes (as set by the
master problem)

(3) The flows from all other érigins currently assigned to the arcs

of the region.

Thé subproblem is solved by an application of the Frank-Wolfe algorithm.
" Because boundary node flows into a region are treated as origins, the .
basic shortest path routine of CATNAP or SP can no longer be used; instéad, a
transportation proﬁlem must be solved and a code called GNET[lS] is wused for
this purpose. GNET also provides the dual multipliers which are needed for
the master problem cuts.

The linear program modules are used to solve the Benders Master problem
P4r. The BD code uses a slightly modified version of the Control Analysis

Mathematical Programming System (CAMPS) described in reference [16].

4.4 APPLICATION TO SUBAREA FOCUSING
The subarea focusing problem involves the investigation of changes
to network topology and/or arc parameters within a given geographic region.
The basic assumption made is that the resulting arc flows in other regions
are not of major interest to the planner, possibly because the changes are
not expected to be significant. Thus, the regions outside the target
region (which we call the window) need not be modeled in complete detail.
One approach (which Dial [20] calls the subarea windowing
problem) is to merely hold constant the input and output flow values g; at
the boundary nodes of the window; the inference is that there is no
external response to any of the changes within the window. This seems to

be an unnecessarily restrictive assumption. Another approach is to
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aggregate the external regions in some fashion so as to reduce the level
of detail while hopefully preserving a degree of realistic response, It
is very difficult, however, to specify general rules for carrying out the

aggregation.

One suggestion for solving the subarea focusing problem involves the
Benrders Decqmposition algorithm described above. An initial solution for
the ené&re network is firsﬁ obtained; the window is designated as one of the
regions, region %' for example. The algorithm, however, must be modified
slightly. Recall that changes in the Kj values may invalidate the dual

feasibility of (f;

’ Gir); our technique requires a set of subproblem
P3r solutions which are simultaneously dual feasible for all commodities
reR and all regions & # &'. Thus, for the final pass over the -
cémmodities in the Pl algorithm, we modify Step 2 so that the old value
of f; is replaced in Kj instead of the new optimal value obtained
from problem PZr.
The changes within region &' are then made and the algorithm is
repeated.
4.5 COMPUTATIONAL EXPERIENCE AND RESULTS

In addition to small test problems, the BD program has been used to solve

the 8l-node medium-sized problem described in Section 2.4. The basic approach

was to obtain optimal or near-optimal solutions to each subproblem and to repeat
the master problem - subproblem iteration until the upper and lower bounds
on the optimum value were very close. In this way, the most accurate numerical
results could be used for testing .the algorithm.

The convergence of the individual subproblems was quite slow. (Recall
that a subproblem requires a minimum cost traffic assignment of the trips.fr;m

a single origin to the links of a single region with the flows from the other
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origins held constant.) Since the subproblems are solved by the Frank-Wolfe
algorithm this slow convergence is not unexpected; see [2] for further dis-
cussion. Note also that since the entire subproblem will fit into the computer's

main memory, additional Frank-Wolfe iterations increase only the processor

time and do not require additional input or output.

The convergence of the Benders decomposition procedure itself seems to
ﬁe m;re rapid than that of the Frank-Wolfe algorithm, The }esults in
Table 4.1 are for the initial problem solﬁed after data input, i.e., the assign-
ment of the demands for origin 1. We note first that only fiye to six iterations
are needed to obtain bounds which are fairly close; the master problem has five
decision variables in this case so we conjecture that allowing about one Benders
iteration per boundary node should be a reasonable strategy.

The second and third columns of Table 4.1 reflect cases when the
subproblems were not solved to optimality; the subproblems were stopped when
the Frank-Wolfe bounds on the optimum subproblem solution value were within two
percent and ten percent, respectively, of each other. It is apparent that this
modification results in a slight degradation of the bounds obtained but
in both cases the result is substantially the same.

Inspection of Table 4.1 reveals that the improvement in the upper

bound is not monotone. Initially this is due to the fact that the master problem

. ] -r
has only a few cuts and the solutions g  passed to the subproblems are not verv

effective, The effect does not die out, however, as more cuts are accumulated

in the master; at iteration 5, for example, a much worse subproblem solution is

obtained and it is not until iteration 9 that the situation improves again.
For this reason a feature has.been added to the BD code which allows’

the user to keep only as much of the current master problem solution as will

actually improve the subproblem objective function value. This is done by
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computing the optimum linear combination of the single commodity flow values
- -r
fr which were found for the current and the previous values of the g vectors;

the weight factor is found by a single dimension Newton-Raphson search:

min :E: T. K, + af?K-l + (1 -0a) EFK . (29)
a _ i 3 h| J
JeA

.

If the resulting a value is a* the Er values are adjusted hccording to

8_:, . (30)

The result of applying this heuristic to the 8l-node problem is shown
in the fourth column of Table 4.1 where it may be seen that there is sometimes
a substantial effect (e.g., iterations 1 and 2) and at other times almost
no effect (iterationm 4). It seems prudent to have available a "best" salution
in case of early termination but apparently the method performs best when "bad"
solutions are sent to the subproblems so that good cuts can be returned to the
master. We feel that the results do not justify the use of the heuristic.

The discussion of computational results for BD has thus far focused oﬁ
the solution of problems P3r - P4r for a single commodity. All of the computer
runs in Table 4.1 were carried out for two passes over each of the 31 origins
with the results displayed in Table 4.2.

It is clear that the BD code at the present time is inferior to both
CATNAP and the SP code. It should be pointed out, however, that the great
generality and flexibility of BD involve extensive use of peripheral storage; it
is estimated that at least half the CPU time and about three-quarters of the total
processing charge for the BD runs is related to input-output operations. It is
likely that a properly tuned code with less flexible data structures could

substantially reduce this overhead.
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TABLE 4.2 - PERFORMANCE OF THE BD TRAFFIC ASSIGNMENT COMPUTER CODE

iﬁ' Run Final CPU Disk Processing
Description Solution Time I/0 Cost
Optimal Subproblem| 29341.5 108.81 sec 14,067 $49.46
27 Subproblem 29358.9 69.50 sec 14,340 . $39.51
10% Subproblem 29349.7 68.27 sec 14,637 $39.53
Heuristic 29511.1 75.25 sec 18,145 $46.19
CATNAP 29322.8 4.41 sec 13 $1.34

It should also be noted that up to ten Benders iterations were allowed
for each of the commodity problems in these runs. The results of Table 4,1
indicate that about half that many would probably have been adequate,
at least for the first pass over all the origins. Such "tactical" issues as
this have not been explored.

In summary, then, the BD algorithm of Section 4.2 has been demonstrated
to have reagonable convergence properties in medium-sized traffic assignment
problems. The current implementation of the algorithm involves so much over-
head, however, that is is not suitable for solving large problems and further

work is required to extend the results reported here to practical network

problems.
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5. GEOGRAPHIC DECOMPOSITION USING THE DANTZIG-WOLFE
DECOMPOSITION "ALGORITHM

In this section we present a method for the solution of the basic

traffic assignment problem using geographic decomposition in conjunction

with the Dantzig~Wolfe Decomposition Principle [18].

DAﬁTZIQ:WOLFE DECOMPOSITION IN TRANSPORTATION NETWORK ANALYSIS
Assume that the traffic assignment problem has already been decomposed

by origin (commodity). The problem for origin r would be:

[
Minimize z1T7 = zr (K + f ) (31)
jeA
such that z f§ - z f; = h; (ieN) (32)
jew, jev,
f; > 0 (3eA) (33)
where K;.'. = Z fg.) (jeA) (34)
pfr
and A 1s the set of arcs

N 1is the set of nodes

Wi is the set of arcs originating from node 1
\' is the set of arcs terminating at node i

T is the arc cost for arc j

h, is the "supply" of commodity r at node 1i.

[l }
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We now decompose the network geographically by a partition of nodes.
Let S be the set of deleted arcs so the network (N, A) is decomposed
into a series of disjoint subnetworks (Nz, Ag) £ =1, ... , L, where

4

N=N1UN2U...UN£ (35)
A=A1UA2U...UALUS. i (36)
kk = = - .
Define Wi * Wi ns, Wi* Wi Wi** . (37)
*% a * = -V %%
v, VNS, Vik=vo- vk (38)

Now consider each arc j € S to consist of two arc segments with flows

u§ and v& (u§ is the flow across the "tail half" of the arc and

3

v§ is the flow across the "head half" of the arc (this is equivalent
to creating an artificial node "midway" in the arc, as shown in Figure 5.1)) .
T . r

fj jes T v, jes
vy hj

/—\o becomes '/Do—\"

Figure 5.1 Boundary Arc

We will (arbitrarily) assign the arc cost Tj to u§ and get a problem

equivalent to er:

r

Q2 L

x r r r
z Z Tj(I\j + fj) + z Tj(Kj + uj) (39)

jes

Minimize er
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such that

z f§ < z f§+ z u’jr - Z v, = hy (ieN; 2=1, ... , L) (40)

J
* * k% kk
. jeWi jeVi jeW:.L jeVi
r T
u, = v, =0 jeS
57 Yy (3es) . (41)
r r T .
f., u;,, v. >0 €A
jr U vy 2 (jea) | . (42)
where
ulj’ if jes
r
. p# 43)
K, =1
3 -
:E: f? otherwise,
pfr
We notice that constraint (41) forms the only connection between regions
in p2~. Thus, if (41) was constrained in a Dantzig-Wolfe master
problem, we could have L subproblems each of which deals only with flows
within a region & as follows:
Subproblem r,2 (SP;)
Minimize
zst | = z T, (K: + £1) + z z T, (K. + u;) + ZD (W3, VD) (4s)
Lk i3 b B ] £,3737 3
ek
; jeAz ieN, Jew, jes
r _ r_.r (45)
such that Z Z f + 2 uJ. z vj hi (isNE) o
Jew * JeV * jewi** jeVi**
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r .
fj >0 (JEAJL)
T . *%
uj >0 (Jewi , ieNz)
; vi >0 (JEV,**, 1eN )
j- i L
: ﬁr ut if jeW, ** for some .ieN
where jok ] i .
r T AT T
= { - %%
Dl,j(uj’ Vj) Hj,ij if jeVi for some ile
0 otherwise
and ﬁr

the master problem (MEr) below. (Notice that the H;

1,k is the latest (kth) iterate of the jth dual variable from
14

(46)

(47)

(48)

(49)

are unrestricted

in sign and that we should expect to get unbounded solutions to SPE when

using the Frank-Wolfe procedure).

Master Problem r (MPr)

L k-1
s r T r
Minimize ZMk = :Ez Cl,t El,t
=1 t=1
L k-1
r r T .
such that :E: az,j,tgl,t 0 : Hj,t (jeS)
2=l t=1
k-1
r _r
= = L R L
Z by, the,t 1 (2=1, » L)
t=1
E;’t .>_ 0 (2‘=1’ eee° L; t=l, es e 9 k-l)
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where the columns of coefficients for primal variable E are derived

r
2,t

from the solutions of SPE according to the Dantzig-Wolfe procedure in

terms of ( 41). This can be described as follows:

Assume that SPE at iteration t results in a feasible solution, either

r
j)

r T
)> u

3

r
. (u,,v

v
2,333 ’

finite or unbounded. Denote the relevant (ZSE e " E D
. 9
' ) . jes

r r

 elements of either the extreme point or the extreme ray by (ar » B s Y ),
L,t7 "j,t7 j,t

Then:
T = of
L,t e,t {54)
r *k
Bj,t if jeWi for some ieNl
r - - r . kk (55)
a5t < Y5t if jeV,** for some ieN,
0 otherwise,
r 1 if extreme point
bt C (56)
’ 0 otherwise.

The overall solution method would be to apply the Fragk-Wolfe
Algorithm, see for example [1, 2]. For each major Frank-Wolfe iteration
the objective form is linearized and a new total flow pattern is computed
by solving for each commodity (origin) in turn using the above algorithm.
These flows are added to obtain the total flow pattern.

As mentioned earlier, we have not attempted to implement this
procedure. It would appear to be of about the same order of complexity as
the Bender's Geographic Algorithm. This decomposition method would seem

to be unsuitable for nonlinear subarea focusing because the nonlinear
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objective is treated by Frank-Wolfe approximations iteratively in an

outer loop. We would want to approximate the conditions outside the

cl’
L,t

-reflected merely a local approximation to the nonlinear subproblem costs,

window by using only old proposals from these regions. If the

as would be the case with the above procedure, it would appear that the
old proposals would be "invalid" as soon as new derivatives were taken.
By "invalid" we mean that they would not imply the current objective -

approximation and it would seem fruitless to use an optimization procedure

to select their weights (£'s). However it would be possible to update

r

the cl’t

s to reflect the changing linear objective so that at least the
master problem would be selecting the best of the "suboptimal proposals

from the non-window regions which, perhaps, is all that is wanted in

subarea focusing.
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6. CONCLUSIONS

When this research was begun it was believed ;hat taking advantage
pf the special geographic structure of some transportation networks could
result in algorithms which were more efficient than the basic Frank-
Wolfe algorithm used in UROAD and CATNAP, and that these methods
would be useful in studying the problem of subarea focusing.

i; this study we havé'explored the use of three geographic
decomposition approaches, one based on decomposition for the shortest
path calculation referred to as the SP method, one using the Generalized
Benders Decomposition algorithm due to Geoffrion referred to as the BD
méthod, and one using the Dantzig-Wolfe Decomposition algorithm which
has been formulated but not coded. The principle‘problem addressed with
ail three approaches is the traffic assignment problem with fixed
demands. However, as pointed out in the introduction to this report;
there are other related problems for which this research could be

) applicable.

i The SP method has proven to be the most successful. There is

some flexibility in its use. If enough computer high speed storage is
available to hold each subnetwork, it performs better than the CATNAP
code which uses the same basic Frank-Wolfe algorithm but without making
use of a geographic decomposition of the network. For the largest
network used, which is an aggregated network version of the Washington
DC highway system, the observed improvement in performance could be as
much as about 40 percent. The improvement tends to be most marked at the

highest level of decomposition, which was a decomposition into four
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geographic subregions in our study. On the other hand, the SP method
can be used in a straightforward manner when the available high speed
computer storage is sufficient to hold only the largest subnetwork. In
the latter case, there is an added overhead cost involved in running
the problem.

The BD algorithm has behaved rather poorly, even allowing for the
fact that the code is an experimental one. Furthermore, its usefulness
~ for the problem of subarea focusing, we feel, is, at best, marginal.

The Dantzig-Wolfe approach to geographic decomposition has been
included as an interesting alternative approach. In a sense, it is a
Primal solution procedure where the BD approach is a dual procedure.

We have no reason to believe that it would be a more effective procedure

than the latter.
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APPENDIX 1
Generalized Benders Decomposition
Consider the problem:
‘ ‘ minx,yf(x, ¥,
subject to G(x,y) = 0, xeX, yeY.
Generalized Benders Decomposition allows the solution of such problems
by partitioning into a problem in variables x only and a problem in variables y
only that must be solved several times. The algorithm, in a form suitable for
our purpose, is as follows:
Step 1. Find a yeY and set J = 1.
Solve the problem: |
minxex f(x, ;), subject to G(x, ;) = 0.
Obtain an optimal (or near-optimal) solution §J and the corresponding multiplier
vector G'{ Select the convergence tolerance parameter € > 0 and put UBD =
f(xJ y); form the function

L*(y, u) = infx X {£(x, y) + utG(x, y)}, yeY, u unrestricted.

€

Step 2. Solve the problem:

1 %3 -j = |
nyo, y Yo subject to Yo 2 L¥(y, u?}) j =1, «c.o, J,
J =J -J

by an applicable algorithm and obtain §o » y o If Yo > UBD - € terminate,

mi

otherwise set J = J + 1.
Step 3. Solve the problem:
minxsxf(x, ;J-l), subject to G(x, ;J_l) = 0,
and obtain new GJ, §J; put UBD = min { UBD, f(;J, ;J-l)} . If ;i-l > UBD - ¢

terminate, otherwise go to Step 2.
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